Monday, 1st of September 2025

08:00	Registration and coffee
09:00	Opening Ceremony
	Plenary Lecture: Professor Adam Sobey,
09:15	Programme Director for Data-Centric Engineering at The Alan Turing Institute, UK CURRENT AND FUTURE TRENDS IN DATA-CENTRIC ENGINEERING FOR LIGHTWEIGHT STRUCTURES

Chair: Michael Wisnom, University of Bristol, UK

	Chair thieract trisherity of pristory of									
		Session 1			Session 2					
AI-Driven Process Modelling and Simulation in Composites					Mechanical Behaviour and Failure Prediction with Al					
Chair: Jonathan Belnoue, University of Bristol, UK					Chair: Navid Zobeiry, Univers	sity of Washington, USA				
Time	Type of presentation	Authors	Title	Type of presentation	Authors	Title				
10:10	Keynote	Arghyanil Bhattacharjee ¹ , Kamyar Gordnian ³ , Reza Vaziri ¹ , Trevor Campbell ² and Anoush Poursartip ^{1,3} ¹ Composites Research Network, Departments of Materials Engineering and Civil Engineering, The University of British Columbia, Vancouver, BC, Canada ² Department of Statistics, The University of British Columbia, Vancouver, BC, Canada ³ Convergent Manufacturing Technologies, Vancouver, BC, Canada	AN UNCERTAINTY QUANTIFICATION FRAMEWORK FOR THERMAL MANAGEMENT IN COMPOSITES MANUFACTURING	Keynote	Wenbin Yu ¹ , Banghua Zhao ¹ and R. Byron Pipes ² ¹ School of Aeronautics and Astronautics, Purdue University, USA, ² College of Engineering, Purdue University, USA	ADVANCING MULTISCALE MODELING OF COMPOSITES THROUGH ARTIFICIAL INTELLIGENCE				
10:40	Oral	Salman Zafar ^{1,2} , Mustafa Unel ^{1,2} and Hatice S. Sas ^{1,2,3} ¹ Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul, Turkey ² Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Orhanli-Tuzla, Istanbul, Turkey ³ School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, UK	DETECTING DEFECTS AND DISSIMILAR REGIONS IN LIQUID COMPOSITE MOLDING: A DEEP LEARNING BASED APPROACH TO RESIN FLOW MONITORING	Oral	Luca Patrignani, Silvestre T. Pinho Department of Aeronautics, Imperial College London, London, UK	GRAPH NEURAL NETWORKS FOR EFFICIENT PREDICTION OF MECHANICAL RESPONSE IN COMPOSITE STRUCTURES WITH MODELS USING UNSTRUCTURED MESHES				
11:00	Oral	Jimmy G. Jean, Guillaume Broggi and Baris Caglar Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands	IMAGE-BASED AI MODEL FOR PREDICTION OF MICROFLOW IN PROCESSING OF COMPOSITES	Oral	Jacintha Y.Y. Loh, Vincent B.C. Tan and Tong-Earn Tay Department of Mechanical Engineering, National University of Singapore, Singapore	OPEN-HOLE TENSION STRENGTH PREDICTION WITH MACHINE LEARNING				
11:20			Coff	ee Break	1					

		Session 1		Session 2			
	AI-I	Driven Process Modelling and Simu	lation in Composites		Mechanical Behaviour and Fa	ailure Prediction with AI	
	Chair: Baris Caglar, TU Delft, Netherlands				Chair: Paolo Andrea Carraro, University of Padova, Italy		
11:50	Oral	S. Fernández-León ^{1,2} , D. Mocerino ² , J. Fernández-León ¹ , R. Valle ¹ , L. Baumela ¹ and C. González ^{2,3} ¹ Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, E.T.S. de Ingenieros Informáticos, Madrid, Spain ² IMDEA Materiales, Madrid, Spain	REINFORCEMENT LEARNING FOR RESILIENT MANUFACTURING OF STRUCTURAL COMPOSITES BY LIQUID MOULDING	Oral	Kasper Foss Hansen, Dimitrios Bikos, and Soraia Pimenta Department of Mechanical Engineering, Imperial College London, London, United Kingdom	CONVOLUTIONAL NEURAL NETWORKS FOR FAILURE PREDICTION IN TOW-BASED DISCONTINUOUS COMPOSITES	
		3 Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, Madrid, Spain Ashish Hegde, Dimitrios Zarouchas, Baris			S.Hasebe ¹ , R.Higuchi ² , T.Yokozeki ² and		
12:10	Oral	Caglar Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands	GRAPH NEURAL NETWORK BASED SURROGATE FOR CURE SIMULATION OF COMPOSITES	Oral	S.Takeda 1,2 Department of Aeronautics and Astronautics, The University of Tokyo, Japan 3Aviation Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tokyo, Japan	MACHINE LEARNING-BASED LOW-VELOCITY IMPACT DAMAGE PREDICTION FOR CARBON FIBER REINFORCED PLASTICS	
12:30	Oral	Siyuan Chen ¹ , Adam J. Thompson ¹ , Tim J. Dodwell ^{2,3} , Stephen R. Hallett ¹ and Jonathan PH. Belnoue ^{1,4} ¹ Bristol Composites Institute, University of Bristol, UK ² Department of Engineering, University of Exeter, UK ³ digiLab, The Innovation Centre, Exeter, UK ⁴ National Composites Centre, Bristol, UK	PROBABILISTIC AI FOR IMPROVED PROCESS ROBUSTNESS IN NON-CRIMP FABRIC FORMING	Oral	Luan Trinh ¹ , Quaiyum M. Ansari ² and Paul Weaver ³ ¹ Faculty of Engineering and Technology, Technological University of the Shannon, Midlands Midwest, Ireland ² Department of Aerospace and Mechanical Engineering, South East Technological University, Carlow, Ireland ³ Bernal Institute, School of Engineering, University of Limerick, Ireland	MACHINE LEARNING-AIDED CLASSIFICATION OF BUCKLING BEHAVIOUR IN STIFFENED COMPOSITE CYLINDRICAL SHELLS WITH GEOMETRIC AND MATERIAL UNCERTAINTIES	
12:50	Data-driven Product Engineering and Design, University of Augsburg, Germany Oral FAST PREDICTION OF WARPAGE IN INJECTION- MOLDED SHORT FIBER REINFORCED COMPOSITES BY COUPLING MACHINE LEARNING AND DIFFERENTIABLE FEM TO INCORPORATE REAL DATA		Oral	Christian Düreth ¹ , Andreas Hornig ^{1,2} and Maik Gude ¹ ¹ Institute of Lightweight Engineering and Polymer Technology (TUD Dresden University of Technology, Germany) ² Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig (ScadS.AI, TUD Dresden University of Technology, Germany)	GAUSSIAN PROCESS REGRESSION FOR MULTI- MODAL FATIGUE CRACK GROWTH IDENTIFICATION IN TEXTILE-REINFORCED COMPOSITES		
13:10	Lunch						
14:10		Prof	Plenary Lecture: Professor of computational physics at Arts 6				
		ŀ	HYBRID AI TO ENHANCE COMPOSITES	SCIENCE, EN	GINEERING AND TECHNOLOGY		

		D. Gray ¹ , Y. Chen ¹ , A. Rhead ¹ , R. Butler ¹	FOURIER NEURAL OPERATOR TO PREDICT MICROSCALE STRESS AND DAMAGE FIELDS IN COMPOSITES			
		¹ Department of Mechanical Engineering, University of Bath, UK				
		R.Zammit-Mangion ¹ , T.Ainsworth ² , C.Fallon ¹ , E.G.Loukaides ¹ and F.Pinto ¹	ENHANCING THE RELIABILITY OF ADHESIVELY BONDED AIRCRAFT JOINTS USING MACHINE LEARNING METHODS			
		¹ Department of Mechanical Engineering, University of Bath, United Kingdom				
		² GKN Aerospace, Isle of White, United Kingdom				
		Kailun Deng ¹ , Hasan Caglar ² , Yifan Zhao ¹ and David Ayre ²	ARTIFICIAL INTELLIGENCE-ASSISTED STACKING SEQUENCE DESIGN IN COMPOSITE LAMINATES			
		¹ Centre for Life-cycle Engineering and Management, Cranfield University, UK.				
		² Composites and Advanced Materials Centre, Cranfield University, UK				
		Kieran Guoite ^{1,2} , Chris Dighton ¹ , Cristian Lira ¹ , Ole T. Thomsen ² , Jonathan PH. Belnoue ^{1,2}	IMPLEMENTATION OF GAUSSIAN PROCESS MACHINE LEARNING FOR RESIN INFUSION SIMULATIONS			
		¹ National Composites Centre, Feynman Way, Bristol, United Kingdom				
		² Bristol Composites Institute, University of Bristol, Queens Building, University Walk, Bristol, United Kingdom				
		Yan Shen ¹ , Tianyou Yuan ¹ , Jun Zhou ² , Cheng Qiu ^{3,} Jinglei Yang ^{1, 4}	MULTIMODAL FUSION LEARNING FOR SUSTAINABLE COMPOSITE MANUFACTURING: INTEGRATING			
	Flash talks	¹ Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology	MICROSTRUCTURAL IMAGING AND MULTI-OBJECTIVE PROCESS OPTIMIZATION			
		² School of Nursing, Center of Smart Health, The Hong Kong Polytechnic University, HKSAR, China				
		³ Institute of Mechanics, Chinese Academy of Sciences, China				
		⁴ HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, China				
5:00		Kuthan Çelebi¹, Oleksandr G. Kravchenko² and Sergii G. Kravchenko¹	A DATA-DRIVEN SURROGATE MODELLING FRAMEWORK FOR MULTI-SCALE ANALYSIS OF MORPHOLOGICALLY COMPLEX COMPOSITES			
3.00	riasir taiks	¹ Department of Materials Engineering, The University of British Columbia, Canada				
		² Department of Mechanical and Aerospace Engineering, Old Dominion University, U.S.A.				
		Xin Lu ¹ , Ryo Higuchi ¹ and Tomohiro Yokozeki ¹	OPEN-SOURCE C++ USER SUBROUTINES FOR SCALABLE AND DATA-DRIVEN FRACTURE ANALYSIS OF COMPOSITE			
		¹ Department of Aeronautics and Astronautics, The University of Tokyo, Japan	MATERIALS USING ABAQUS			
		Xiaohui. Zhang¹, Ning. Dong² and Gerhard. Ziegmann³	DEEP LEARNING-BASED FLOW FRONT DETECTION FOR IN-PLANE 1D PERMEABILITY MEASUREMENT			
		¹ Institute for Polymer Materials and Plastics Technology, Clausthal University of Technology, Germany				
		² Institute for Informatics, Clausthal University of Technology, Germany				
		³ Institute for Polymer Materials and Plastics Technology, Clausthal University of Technology, Germany				
		Dhiraj Biswas ^{1,4} , Rajesh Nakka ² , Sathiskumar A. Ponnusami² , Ganapathi A. Sengodan ³ ¹ Department of Materials, University of Oxford, United Kingdom.	MICROSCALE TENSILE-COMPRESSIVE RESPONSE AND FRACTURE PREDICTION OF COMPOSITES USING MULTI-OUTPUT CNN MODEL			
		² Department of Engineering, City St George's, University of London, United Kingdom.				
		³ School of Science, Engineering and Environment, University of Salford, United Kingdom.				
		J. Seiffert ¹ , M. Ertl ¹ and K. Drechsler ¹	DEEP LEARNING TECHNIQUES FOR IN-SITU MISALIGNMENT QUANTIFICATION IN CONTINUOUS FIBER ADDITIVE			
		¹ Chair of Carbon Composites, Technical University of Munich, Germany	MANUFACTURING			
		Mohammad N. Saquib ¹ , Richard Larson ¹ , Jiang Li ² , Sergii G. Kravchenko ³ and Oleksandr G. Kravchenko ¹	RECONSTRUCTION OF FIBER ORIENTATION MORPHOLOGY IN MOLDED DISCONTINUOUS FIBER COMPOSITES USING RESIDUAL STRESS-BASED DEEP LEARNING			
		¹ Mechanical and Aerospace Engineering Department, Old Dominion University, USA				

l l		² Electrical and Computer Engineering Departme	nt Old Dominion University USA			
		³ Department of Materials Engineering, The Univ				
		Ji Dong ¹ , Ali Kandemir ² , Ian Hamerton ²	, .,	BEYOND PIXELS: NEURAL IMPLICIT REPRESENTATIONS FOR ACCURATE FIBRE ALIGNMENT IN COMPOSITES		
	¹ School of Engineering Mathematics and Technology, University of Bristol, UK					
			ospace and Design Engineering, University of Bristol,			
		UK	ospace and besign engineering, officers, of briston,			
15:40			Poster Session Fol	lowed by Co	ffee Break	
		Session 1			Session	12
	Al-	-Driven Process Modelling and Simu	lation in Composites		Mechanical Behaviour and Fa	ailure Prediction with Al
		Chair: Mikhail Matveev, The University	of Nottingham, UK		Chair: Marco Petrolo, Polite	ecnico di Torino, Italy
16:20	Oral	<u>Tim Newman</u> ¹ , Cristian Lira ¹ , Jamie Hartley ² , Mindaugas Max Sasnauskas ² , Arjen Koorevaar ³ ¹ National Composites Centre, Engineering Development, Bristol, UK ² National Composites Centre, Manufacturing Development, Composite Moulding, Bristol, UK	DEEP MULTI-AGENT REINFORCEMENT LEARNING FOR VENT AND INLET POSITIONING AND QUANTITY IN RESIN TRANSFER MOULDING	Oral	Chaeyoug Hong ¹ and <u>Wooseok Ji²</u> Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Republic of Korea	EFFICIENT TRAINING STRATEGY FOR A SCALABLE MICROMECHANICS MODEL PREDICTING LOCALIZED STRESSES BETWEEN FIBRES
		³ Polyworx BV, Advanced Computing, Nijverdal, The Netherlands				
16:40	Oral	Liam D. Burns, Fadi El Kalach, Saeed Faharani, and Ramy Harik Clemson Composites Center, Clemson University, Greenville, SC, USA	A MACHINE LEARNING APPROACH TO PROCESS PARAMETER OPTIMIZATION OF HIGH-PRESSURE RESIN TRANSFER MOLDING		Mohammad N. Saquib¹, Richard Larson¹, Jiang Li², Sergii G. Kravchenko³ and Oleksandr G. Kravchenko¹ ¹ Mechanical and Aerospace Engineering Department, Old Dominion University, USA ² Electrical and Computer Engineering Department, Old Dominion University, USA ³ Department of Materials Engineering, The	FAILURE PREDICTION IN MOLDED COMPOSITES USING RESIDUAL STRESS AND DEEP LEARNING DRIVEN MICROSTRUCTURE RECONSTRUCTION
		Nuri Frsov ¹ Mehmet Can Engül Pinar			University of British Columbia, Canada J. Gerritzen ¹ , A. Hornig ^{1,2,3} and M. Gude ³	
17:00	Oral	Nuri Ersoy ¹ , Mehmet Can Engül, Pınar Acar ² ¹ Boazici University, TURKEY ² Virginia Tech University, USA	A NEURAL NETWORK APPROACH TO COMPOSITES PROCESS SIMULATIONS	Oral	1 Institute of Lightweight Engineering and Polymer Technology, TUD Dresden University of Technology, Germany 2 Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig (ScaDS.AI), TUD Dresden University of Technology, Germany 3 Department of Engineering Science, Solid Mechanics and Materials Engineering, University of Oxford, OX1 3PJ, Oxford, United	INFLUENCE OF THE SAMPLING STRATEGY FOR TRAINING DATA ON EDGE CASE PERFORMANCE OF DATA DRIVEN FAILURE CRITERION FOR FRP
17:20	Oral	Suplal Tudu and R. Velmurugan Aerospace Engineering, Indian Institute of Technology Madras, India	MODELLING OF CURING PROCESS OF FIBER REINFORCED POLYMER COMPOSITES IN AUTOCLAVE USING AI	Oral	Kingdom Runze Li, Mário Miranda and Silvestre T. Pinho	THE UNCERTAINTY QUANTIFICATION OF COMPOSITE FAILURE PREDICTIONS BASED ON BAYESIAN NEURAL NETWORKS

Artificial Intelligence for Composite Materials Conference (AIComp25), Bristol United Kingdom, 1-3 September 2025

17:40		Oral	Department of Aeronautics, Imperial College London, London, UK Attada Phanendra Kumar ¹ , Shailesh Garg ² , Souvik Chakraborty ² , Dineshkumar Harursampath ¹ and Sathiskumar Anusuya Ponnusami ³ ¹ Department of Aerospace Engineering, Indian Institute of Science, Bengaluru, India ² Department of Applied Mechanics, Indian Institute of Technology Delhi, Delhi, India ³ Department of Engineering, City St George's, University of London, London, United Kingdom	CONFORMAL PREDICTION FOR UNCERTAINTY QUANTIFICATION OF COMPOSITE THERMOMECHANICAL PROPERTIES USING RANDOMISED PRIOR WAVELET NEURAL OPERATORS		
18:00	END OF THE DAY 1					
18:30	WELCOME RECEPTION: WILLS MEMORIAL HALL					

Tuesday, 2nd of September 2025

Registration and coffee
Plenary Lecture: Dr Pierre-Yves Mechin
Composites structural analyst & materials specialist, PlyNow
FROM MOLECULE TO STRUCTURE, COMPOSITES BEHAVIOUR AND PERFORMANCE ENHANCED BY AI

	Chair: Anoush Poursartip, The University of British Columbia, Canada								
Session 3					Session 4				
	Al for Int	telligent Composite Manufa	cturing and Control		Data-Driven Surrogate Models and Accelerated Simulations				
	Chai	ir: Alex Kravchenko, Old Dominio	n University, USA		Chair:	: Wenbin Yu, Purdue University, USA			
Time	Type of presentation	Authors	Title	Type of presentation	Authors	Title			
10:10	Keynote	Ramy Harik Clemson Composites Center, Clemson University	TOWARDS SMART AUTOMATED FIBER PLACEMENT	Keynote	Pavana Prabhakar ¹ , Haotian Feng ² , Sabarinathan P Subramaniyan ³ , and Hridyesh Tewani ⁴ ¹ Department of Mechanical Engineering, University of Wisconsin-Madison, USA ² Department of Civil & Environmental Engineering, University of Wisconsin-Madison, USA	AI FOR THE ANALYSIS, DESIGN, AND OPTIMIZATION OF COMPOSITES			
10:40	Oral	Anatoly Koptelov, Hanna Beketova, Jonathan PH. Belnoue, Stephen R. Hallett, Iryna Tretiak and Bassam El Said Bristol Composites Institute, University of Bristol, Bristol, BS8 1TR, United Kingdom	ASPECTS OF SPATIAL TIME SERIES FORECASTING FOR COMPOSITE MANUFACTURING PROBLEMS OF VARIOUS DIMENSIONALITY	Oral	M. Petrolo ¹ , M. Santori ¹ , K. Johnson ² , E. Zappino ¹ and N. Zobeiry ² ¹ MUL2 LAB, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy ² Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA	ASSESSMENT OF MULTI-FIDELITY STRUCTURAL THEORIES TO TRAIN PROBABILISTIC MACHINE LEARNING FOR PROCESS-INDUCED DEFECTS			
11:00	Oral	Marcello Laurenti, Irene Bavasso, Erika Palazzi, Jacopo Tirillò, Fabrizio Sarasini and Filippo Berto University of Rome "La Sapienza", Department of Chemical Engineering Materials Environment	AI-DRIVEN COMPUTATIONAL FRAMEWORK FOR OPTIMIZING FDM PROCESS PARAMETERS AND ENHANCING MECHANICAL PERFORMANCE	Oral	S. Fernández-León ^{1,2} , D. Mocerino ² , R. Valle ¹ , L. Baumela ¹ and C. González ^{2,3} ¹ Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Spain ² IMDEA Materiales, , Madrid, Spain ³ Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid , Spain	A DEEP SURROGATE MODEL FOR ACCELERATING LCM MOULD-FILLING SIMULATIONS IN UNSTRUCTURED AND THREE-DIMENSIONAL MESHES			
11:20				(Coffee Break				

	Session 3				Session 4			
	Al for In	telligent Composite Manufa	cturing and Control		Data-Driven Surr	ogate Models and Accelerated Simulations		
	Al for Intelligent Composite Manufacturing and Control				Chair: Bassam El Said, University of Bristol, UK			
		Jan Wolf ¹ , Aaron Vogel ² , Mathias Morgenstern ² Christian Prescher ³ , Ulrich Burgbacher ⁴ , Manuel Prätorius ⁴ , Luis Garcia ⁵ , Benjamin Risse ⁵ , Thomas Behnisch ¹ and Maik Gude ¹			Aewis K.W. Hii, Stephen R. Hallett and Bassam El Said Bristol Composites Institute, University of Bristol, UK			
11:50	Oral	¹ Institute for Lightweight Engineering and Polymer Technology, TUD Dresden University of Technology, Germany	TAILORING CARBON FIBERS COMBINING NOVEL INLINE SENSORS AND MACHINE LEARNING	Oral		MODELLING DEFECTS AND PROGRESSIVE 3D FAILURE IN LARGE COMPOSITE COMPONENTS WITH SHELL ELEMENTS: A DATA-DRIVEN, MULTI-SCALE APPROACH		
		² SURAGUS GmbH, Germany ³ STRUCNAMICS Engineering GmbH, Germany						
		⁴ tapdo technologies GmbH, Germany						
12:10	Oral	Simone Bancora ¹ , Tim Newman ¹ , Paris Mulye ² ¹ National Composites Centre, United Kingdom ² Quantiflex Simulations SAS, France	USE OF DEEP REINFORCEMENT LEARNING TO ACHIEVE REAL-TIME CONTROL OF A RESIN INFUSION PROCESS	Oral	Jens Wiegand¹ and Giuseppe Zumpano ¹ COMPACT Composite Impact Engineering LTD, UK, ² Rolls Royce PLC, UK	ACCELERATING COMPOSITE IMPACT SIMULATIONS BY THE USE OF NEURAL NET`WORK BASED SURROGATE MODELS		
12:30	Oral	Patrick Flore, Fabian Röder, Kevin Chen, Andreas Gebhard Leibniz-Institut für Verbundwerkstoffe, Germany,	GEOMETRY-BASED SYNTHETIC DATA AND DEEP LEARNING FOR ONLINE SURFACE INSPECTION OF FIBER- REINFORCED COMPOSITES	Oral	Shuang Yan ¹ , Mikhail Matveev ¹ , Michael Causon ² , Marco Iglesias ² , Andreas Endruweit ¹ , and Michael Tretyakov ² 1 Composites Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK 2 School of Mathematical Sciences, Faculty of Science, University of Nottingham, Nottingham, UK	A SURROGATE MODEL FOR INVERSE PARAMETER ESTIMATION IN RESIN TRANSFER MOULDING PROCESSES		
12:50					Lunch			
	Alim Alim D	Session 5	hamal the alab 24 't '			Session 6		
	AI IN NON-De	estructive Testing and Struct Chair: Yentl Swolfs, KU Leuve		Al-Driven Design and Industrial Applications in Composites				

13:50	Oral	A. Tabatabaeian ¹ , B. Jerkovic ² , P. Harrison ¹ , E. Marchiori ² and M. Fotouhi ³ ¹ James Watt School of Engineering, University of Glasgow, UK, ² Institute of Computing and Information Sciences, Radboud University, the Netherlands ³ Faculty of Civil Engineering and Geosciences, Delft University of Technology, the Netherlands	DETECTION OF BARELY VISIBLE IMPACT DAMAGE IN CFRP COMPOSITE PANELS USING DEEP LEARNING MODELS AND HYBRID GLASS/CARBON SENSORS	Oral	Joseph Kirchhoff¹, Thomas O'Leary-Roseberry¹, John Yao¹, Dingcheng Luo¹, Yohannes Bekele¹, Tom Seidl², Tyler Hudson³, Andy Newman³, Wesley Tayon³, Mehran Tehrani⁴, Omar Ghattas¹ ¹ The University of Texas at Austin, USA, ² Sandia National Labs, USA ³ NASA Langley Research Center, USA ⁴ The University of California at San Diego, USA	MICRON-SCALE HETEROGENEOUS CHARACTERIZATION OF THERMOPLASTIC COMPOSITES VIA SEM-DIC, FINITE ELEMENTS & NEURAL OPERATORS
14:10	Oral	Fabing Emmanuel ^{1,2} , Méchin Pierre-Yves ¹ and Keryvin Vincent ² ¹ Dassault Systèmes, France ² Université Bretagne Sud, IRDL, France	AI BASED FIBRE MISALIGNMENT MEASUREMENT	Oral	Göran Fernlund ^{1,2} , Alireza Forghani ¹ , Anthony Floyd ¹ , and Anoush Poursartip ^{1,2} ¹ Convergent Manufacturing Technologies, Canada ² The University of British Columbia, Materials Engineering, Canada	A STRUCTURED APPROACH TO MERGING AI AND ML INTO ESTABLISHED COMPOSITES PROCESS SIMULATION AND PROCESS ANALYTICS
14:30	Oral	Jonas Naumann ^{1,2} , Jonas P. Appels ¹ , Philipp Sämann ¹ , Timo de Wolff ² and Christoph Brauer ¹ ¹ Institute of Lightweight Systems, German Aerospace Center (DLR) Stade, Germany ² Institute of Analysis and Algebra, Technische Universität Braunschweig, Braunschweig, Germany	ENHANCING COMPOSITE MICROGRAPH ANALYSIS WITH SEMANTIC SEGMENTATION	Oral	J. Kucera National Composites Centre, UK	CompoST – Composite Standard for composite data transfer and interoperability
14:50	Oral	Mahoor Mehdikhani, Rui Guo, Shailee Upadhyay, Christian Breite, and Yentl Swolfs Department of Materials Engineering, KU Leuven, Belgium,	SEGMENTATION IN X-RAY COMPUTED TOMOGRAPHY IMAGES USING DEEP LEARNING	Oral	Hussain Abass ^{1,2} , Ross Allen ¹ , Andrew Corbett ^{1,3} and Ton Peijs ² ¹ digiLab, UK ² WMG, University of Warwick ³ Alan Turing Institute, UK	FASTER ANALYSIS AND OPTIMISATION OF DISCONTINUOUS COMPOSITES USING MACHINE LEARNING
15:10				Coffee Bre	eak and Poster Session	
	Session 5				At Duiver Design	Session 6
	AI in Non-Destructive Testing and Structural Health Monitoring					and Industrial Applications in Composites Tay, National University of Singapore, Singapore
15:50	Oral	Umeir Khan ¹ , Vincent K. Maes ¹ , Rob Hughes ² , Petar Zivkovic ³ , Jon Wright ³ , Turlough McMahon ³ , and James Kratz ¹	TRANSFER LEARNING FOR EFFICIENT PHOTO-INSPECTION OF IN-PLANE WAVINESS	Oral	J. Kucera, K. Angelov , P. Druiff National Composites Centre, UK	NATIONAL COMPOSITE CENTER UPCOMING PROJECTS

		¹ Bristol Composites Institute, Department of Aerospace Engineering, University of Bristol, United Kingdom ² Department of Mechanical Engineering, University of Bristol, United Kingdom ³ Airbus UK, United Kingdom				
16:10	Oral	Rui Guo, Mahoor Mehdikhani, Christian Breite and Yentl Swolfs <i>Materials Engineering, KU Leuven, Belgium</i>	A 2D PACKING GENERATOR FOR UNIDIRECTIONAL FIBRE-REINFORCED COMPOSITES BASED ON A GENERATIVE ADVERSARIAL NETWORK	Oral	S. Psarras¹, G. Sotiriadis¹, M. Sergolle², T. Balutch², E. Billaudeau² and V. Kostopoulos¹ ¹ Department of Mechanical Engineering & Aeronautics, University of Patras, Greece ² Naval Group, Centre d'Expertise des Structures et Matériaux Navals Technocampus Océan, France	ENHANCING REPAIR PATCH DESIGN FOR THICK COMPOSITE STRUCTURES IN NAVAL APPLICATION USING ARTIFICIAL INTELLIGENCE
16:30	Oral	A. Gazzola, M. Quaresimin, P.A. Carraro and M. Zappalorto Department of Management and Engineering, University of Padova, Vicenza, Italy.	DEEP LEARNING APPROACH FOR STRUCTURAL HEALTH MONITORING OF MULTIDIRECTIONAL LAMINATES VIA ELECTRICAL MEASUREMENTS	Oral	Yilun Dong ¹ , Zhong Zhang¹ ¹ School of Engineering Science, University of Science and Technology of China, China	ARTIFICIAL NEURAL NETWORKS APPLIED TO POLYMER COMPOSITES
16:50	Oral	Mengyue He ^{1,2} , Zhifang Zhang ¹ and Karthik Ram Ramakrishnan ³ ¹ Research Center for Wind Engineering and Engineering Vibration, Guangzhou University, Guangzhou, China ² College of Engineering, Shantou University, Shantou, China ³ Bristol Composites Institute, University of Bristol, United Kingdom	SUPPORT VECTOR MACHINE ALGORITHMS FOR DELAMINATION ASSESSMENT IN VIBRATION BASED SHM	Oral	Andrejs Krauklis¹ Latvia University of Life Sciences and Technologies, Faculty of Forest and Environmental Sciences, Institute of Civil Engineering and Woodworking, MEI Core Group, Latvia	MODULAR MATERIALS INFORMATICS FRAMEWORK FOR ASSESSING COMPOSITE MATERIAL AGEING
17:10	Oral	Mihai M. Vasilache ^{1,2} , Iryna Tretiak ³ , Rostand B. Tayong ¹ and Vladan Velisavljevic ¹ ¹ Institute for Research in Engineering and Sustainable Environment (IRESE), School of Computer Science and Technology, University of Bedfordshire, Luton, United Kingdom ² GKN Aerospace Service Limited, London Luton Airport, Luton, Bedfordshire, United Kingdom	USING MACHINE LEARNING CONVOLUTION NEURAL NETWORK METHODS FOR THE ULTRASOUND CHARACTERISATION OF POROSITY ACROSS CARBON FIBRE REINFORCED POLYMER LAYERS	Oral		

Artificial Intelligence for Composite Materials Conference (AIComp25), Bristol United Kingdom, 1-3 September 2025

	³ Bristol Composites Institute, University of Bristol, United Kingdom						
17:30		END OF THE DAY 2					
19:00	GALA DINNER: THE SANSOVINO HALL AT BRISTOL HARBOUR HOTEL						

Wednesday, 3rd of September 2025

09:00	Coffee and Pastries					
09:30	Plenary Lecture: Dr Navid Zobeiry Associate Professor in the Materials Science & Engineering Department at the University of Washington in Seattle, USA Applied AI for Composites: From Accelerated Testing to Autonomous Certification and Smarter Engineering Chair: Carlos González, IMDEA Materials, Spain					
	Session 7					
Physics-Informed Neural Networks (PINNs) and Physics-Based AI						
Time	Type of presentation	Authors	Title			
10:20	Oral	Ehsan Ghane ¹ , Marina Maia ² , Iuri Rocha ² , Martin Fagerström ³ , and Mohsen Mirkhalaf ¹ ¹ Department of Physics, University of Gothenburg, Sweden, ² Department, Delft University of Technology, The Netherlands ³ Department of Industrial and Materials Science, Chalmers University of Technology, Sweden	HIERARCHICAL PHYSICALLY RECURRENT NEURAL NETWORKS FOR MULTI-SCALE MODELING OF WOVEN COMPOSITES			
10:40	Oral	Sahar Abouali, Anoush Poursartip, Reza Vaziri Composites Research Network, Departments of Civil Engineering and Materials Engineering, The University of British Columbia, Vancouver, BC, Canada	A PHYSICS-INFORMED NEURAL NETWORK FOR INVERSE CHARACTERIZATION OF COMPOSITE DAMAGE MODELS USING FULL-FIELD EXPERIMENTAL DATA			
11:00	Oral	Bernabe Lorenzo Avila ¹ , Nils Meyer ² and Dietmar Koch ³ ¹ Materials Engineering, University of Augsburg, Germany, ² Data-driven Product Engineering and Design, University of Augsburg, Germany ³ Materials Engineering, University of Augsburg, Germany	PREDICTING THERMAL BEHAVIOUR OF C/C-SIC FIBRE-PATCHED STRUCTURES USING PHYSICS-INFORMED-NETWORKS (PINNS)			
11:20	Coffee break					

Session 7					
Physics-Informed Neural Networks (PINNs) and Physics-Based AI					
Chair: Adam Sobey, University of Southampton, UK					
11:50	Oral	John M. Hanna ¹² ¹ Akhet solutions, Rennes, France ² Inria Rennes, France	APPLICATIONS OF PHYSICS-INFORMED NEURAL NETWORKS TO LIQUID COMPOSITE MOLDING		
12:10	Oral	Tobias Würth ¹ , Niklas Freymuth ² , Gerhard Neumann ² and Luise Kärger ¹ ¹ Institute of Vehicle System Technology, Karlsruhe Institute of Technology (KIT), Germany ² Autonomous Learning Robots, Karlsruhe Institute of Technology (KIT), Germany	PHYSICS-INFORMED MESHGRAPHNETS (PI-MGNS) FOR ANSIOTROPIC MATERIALS		
12:30	Oral	Shady Adib ¹ , leva Misiunaite ² ¹ School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom ² Research Laboratory of Innovative Building Structures, Department of Aeronautical Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania	AI-ENHANCED TOPOLOGY OPTIMISATION OF PLA LATTICE STRUCTURES FOR HYBRID COMPOSITE APPLICATIONS: EXPLORING PHYSICS-INFORMED APPROACHES		
12:50	Closing Ceremony				
13:00		FAREWELL LUNCH			
	END OF CONFERENCE.				
14:00	OPTIONAL TOUR TO THE NATIONAL COMPOSITE CENTRE AND ISAMBARD AI				
	Start at 14:30 estimated time return time 17:00 (TBC)				