Monday, 1st of September 2025

08:00	Registration and coffee					
	Opening Ceremony					
09:00	09:00 Location: Lecture Theatre					
	Plenary Lecture: Professor Adam Sobey,					
	Programme Director for Data-Centric Engineering at The Alan Turing Institute, UK					
09:15	CURRENT AND FUTURE TRENDS IN DATA-CENTRIC ENGINEERING FOR LIGHTWEIGHT STRUCTURES					
	Chair: Michael Wisnom, University of Bristol, UK.					

Location: Lecture Theatre

		Session 1		Session 2		
	AI-Driven Process Modelling and Simulation in Composites Chair: Jonathan Belnoue, University of Bristol, UK Location: Lecture Theatre			Mechanical Behaviour and Failure Prediction with AI Chair: Navid Zobeiry, University of Washington, USA Location: Cinema Room G.H01		
Time	Type of presentation	Authors	Title	Type of presentation	Authors	Title
10:10	Keynote	Arghyanil Bhattacharjee ¹ , Kamyar Gordnian ³ , Reza Vaziri ¹ , Trevor Campbell ² and Anoush Poursartip ¹ , 3 ¹ Composites Research Network, Departments of Materials Engineering and Civil Engineering, The University of British Columbia, Vancouver, BC, Canada ² Department of Statistics, The University of British Columbia, Vancouver, BC, Canada ³ Convergent Manufacturing Technologies, Vancouver, BC, Canada	AN UNCERTAINTY QUANTIFICATION FRAMEWORK FOR THERMAL MANAGEMENT IN COMPOSITES MANUFACTURING	Keynote	Wenbin Yu ¹ , Banghua Zhao ¹ and R. Byron Pipes ² ¹ School of Aeronautics and Astronautics, Purdue University, USA, ² College of Engineering, Purdue University, USA	ADVANCING MULTISCALE MODELING OF COMPOSITES THROUGH ARTIFICIAL INTELLIGENCE
10:40	Oral	Salman Zafar ^{1,2} , Mustafa Unel ^{1,2} and Hatice S. Sas ^{1,2,3} ¹ Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul, Turkey ² Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Orhanli-Tuzla, Istanbul, Turkey ³ School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, UK	DETECTING DEFECTS AND DISSIMILAR REGIONS IN LIQUID COMPOSITE MOLDING: A DEEP LEARNING BASED APPROACH TO RESIN FLOW MONITORING	Oral	Luca Patrignani, Silvestre T. Pinho Department of Aeronautics, Imperial College London, London, UK	GRAPH NEURAL NETWORKS FOR EFFICIENT PREDICTION OF MECHANICAL RESPONSE IN COMPOSITE STRUCTURES WITH MODELS USING UNSTRUCTURED MESHES

11:00	Oral	Jimmy G. Jean, Guillaume Broggi and Baris Caglar Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands	IMAGE-BASED AI MODEL FOR PREDICTION OF MICROFLOW IN PROCESSING OF COMPOSITES	Oral	Jacintha Y.Y. Loh, Vincent B.C. Tan and Tong-Earn Tay Department of Mechanical Engineering, National University of Singapore, Singapore	OPEN-HOLE TENSION STRENGTH PREDICTION WITH MACHINE LEARNING
11:20			Coffe	<mark>ee Break</mark>		
		Session 1			Session	1 2
	AI-I	Driven Process Modelling and Simu	- The state of the		Mechanical Behaviour and Fa	
		Chair: Baris Caglar, TU Delft, No			Chair: Paolo Andrea Carraro, U	
	l	Location: Lecture Theat	tre		Location: Cinema	K00M G.HU1
11:50	Oral	S. Fernández-León ^{1,2} , D. Mocerino ² , J. Fernández-León ¹ ,R. Valle ¹ , L. Baumela ¹ and C. González ^{2,3} ¹ Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, E.T.S. de Ingenieros Informáticos, Madrid, Spain ² IMDEA Materiales, Madrid, Spain ³ Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, Madrid, Spain Ashish Hegde, Dimitrios Zarouchas, Baris	REINFORCEMENT LEARNING FOR RESILIENT MANUFACTURING OF STRUCTURAL COMPOSITES BY LIQUID MOULDING	Oral	Kasper Foss Hansen, Dimitrios Bikos, and Soraia Pimenta Department of Mechanical Engineering, Imperial College London, London, United Kingdom S.Hasebe¹, R.Higuchi², T.Yokozeki² and	CONVOLUTIONAL NEURAL NETWORKS FOR FAILURE PREDICTION IN TOW-BASED DISCONTINUOUS COMPOSITES
12:10	Oral	Caglar Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands	GRAPH NEURAL NETWORK BASED SURROGATE FOR CURE SIMULATION OF COMPOSITES	Oral	S.Takeda 1,2 Department of Aeronautics and Astronautics, The University of Tokyo, Japan 3Aviation Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tokyo, Japan	MACHINE LEARNING-BASED LOW-VELOCITY IMPACT DAMAGE PREDICTION FOR CARBON FIBER REINFORCED PLASTICS
12:30	Oral	Siyuan Chen ¹ , Adam J. Thompson ¹ , Tim J. Dodwell ^{2,3} , Stephen R. Hallett ¹ and Jonathan PH. Belnoue ^{1,4} ¹ Bristol Composites Institute, University of Bristol, UK ² Department of Engineering, University of Exeter, UK ³ digiLab, The Innovation Centre, Exeter, UK ⁴ National Composites Centre, Bristol, UK	PROBABILISTIC AI FOR IMPROVED PROCESS ROBUSTNESS IN NON-CRIMP FABRIC FORMING	Oral	Luan Trinh ¹ , Quaiyum M. Ansari ² and Paul Weaver ³ ¹ Faculty of Engineering and Technology, Technological University of the Shannon, Midlands Midwest, Ireland ² Department of Aerospace and Mechanical Engineering, South East Technological University, Carlow, Ireland ³ Bernal Institute, School of Engineering, University of Limerick, Ireland	MACHINE LEARNING-AIDED CLASSIFICATION OF BUCKLING BEHAVIOUR IN STIFFENED COMPOSITE CYLINDRICAL SHELLS WITH GEOMETRIC AND MATERIAL UNCERTAINTIES

12:50	Oral	Julian Greif, Nils Meyer Data-driven Product Engineering and Design, University of Augsburg, Germany	FAST PREDICTION OF WARPAGE IN INJECTION-MOLDED SHORT FIBER REINFORCED COMPOSITES BY COUPLING MACHINE LEARNING AND DIFFERENTIABLE FEM TO INCORPORATE REAL DATA	Oral	Christian Düreth ¹ , Andreas Hornig ^{1,2} and Maik Gude ¹ ¹ Institute of Lightweight Engineering and Polymer Technology (TUD Dresden University of Technology, Germany) ² Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig (ScadS.AI, TUD Dresden University of Technology, Germany)	GAUSSIAN PROCESS REGRESSION FOR MULTI- MODAL FATIGUE CRACK GROWTH IDENTIFICATION IN TEXTILE-REINFORCED COMPOSITES
13:10				unch		
14:10	<i>Chair:</i> Reza Vaziri, The Unive			et Metiers Ins	GINEERING AND TECHNOLOGY h Columbia, Canada	
		<u>D. Gray</u> ¹ , Y. Chen ¹ , A. Rhead ¹ , R. Butler ¹		FOURIER NEUR	AL OPERATOR TO PREDICT MICROSCALE STRI	ESS AND DAMAGE FIELDS IN COMPOSITES
		¹ Department of Mechanical Engineering, Universe R.Zammit-Mangion ¹ , T.Ainsworth ² , C.Fallon Department of Mechanical Engineering, Universe GKN Aerospace, Isle of White, United Kingdom Kailun Deng ¹ , Hasan Caglar ² , Yifan Zhao ¹ and Centre for Life-cycle Engineering and Managen Composites and Advanced Materials Centre, Cr. Kieran Guoite ^{1,2} , Chris Dighton ¹ , Cristian Lir	n ¹ , E.G.Loukaides ¹ and F.Pinto ¹ rrsity of Bath, United Kingdom d David Ayre ² ment, Cranfield University, UK. ranfield University, UK a ¹ , Ole T. Thomsen ² , Jonathan PH. Belnoue ^{1,2}	ARTIFICIAL INT	HE RELIABILITY OF ADHESIVELY BONDED AIRCE	
15:00	Flash talks	² Bristol Composites Institute, University of Bristol Kingdom Kuthan Çelebi ¹ , Oleksandr G. Kravchenko ² a ¹ Department of Materials Engineering, The University of Bristol ² Department of Mechanical and Aerospace Engineering	versity of British Columbia, Canada	A DATA-DRIVER COMPLEX COM		R MULTI-SCALE ANALYSIS OF MORPHOLOGICALLY
		<u>Xin Lu¹</u> , Ryo Higuchi ¹ and Tomohiro Yokozel ¹ Department of Aeronautics and Astronautics, To	he University of Tokyo, Japan	MATERIALS US	ING ABAQUS	DATA-DRIVEN FRACTURE ANALYSIS OF COMPOSITE
		Xiaohui. Zhang ¹ , Ning. Dong ² and Gerhard. Institute for Polymer Materials and Plastics Ted Germany		DEEP LEARNING	G-BASED FLOW FRONT DETECTION FOR IN-PL	ANE 1D PERMEABILITY MEASUREMENT
		² Institute for Informatics, Clausthal University o	f Technology, Germany			

	³ Institute for Polymer Materials and Plastics Technology, Clausthal University of Technology, Germany					
	Dhiraj Biswas ^{1,4} , Rajesh Nakka ² , <u>Sathiskumar A. Ponnusami</u> ² , Ganapathi A. Sengodan ³ ¹ Department of Materials, University of Oxford, United Kingdom.			MICROSCALE TENSILE-COMPRESSIVE RESPONSE AND FRACTURE PREDICTION OF COMPOSITES USING MULTI-OUTPUT CNN MODEL		
	² Department of Engineering, City St George's, University of London, United Kingdom.					
		³ School of Science, Engineering and Environmen	t, University of Salford, United Kingdom.			
		J. Seiffert ¹ , M. Ertl ¹ and K. Drechsler ¹		DEEP LEARNING	G TECHNIQUES FOR IN-SITU MISALIGNMENT (QUANTIFICATION IN CONTINUOUS FIBER ADDITIVE
		¹ Chair of Carbon Composites, Technical Universi	ty of Munich, Germany	MANUFACTUR	ING	
		Mohammad N. Saquib ¹ , Richard Larson ¹ , Jia Kravchenko ¹	ang Li ² , Sergii G. Kravchenko ³ and Oleksandr G.		ION OF FIBER ORIENTATION MORPHOLOGY IN AL STRESS-BASED DEEP LEARNING	N MOLDED DISCONTINUOUS FIBER COMPOSITES
		¹ Mechanical and Aerospace Engineering Depart	ment, Old Dominion University, USA			
		² Electrical and Computer Engineering Departme	nt, Old Dominion University, USA			
		³ Department of Materials Engineering, The Univ	versity of British Columbia, Canada			
	Ji Dong¹, Ali Kandemir², Ian Hamerton²		BEYOND PIXELS: NEURAL IMPLICIT REPRESENTATIONS FOR ACCURATE FIBRE ALIGNMENT IN COMPOSITES			
	¹ School of Engineering Mathematics and Technology, University of Bristol, UK					
		² Bristol Composites Institute, School of Civil, Aer UK	ospace and Design Engineering, University of Bristol,			
15:40			Poster Session Follog	lowed by Co	ffee Break	
		Session 1			Session	12
	Al-	Driven Process Modelling and Simu	· · · · · · · · · · · · · · · · · · ·	Mechanical Behaviour and Failure Prediction with AI		
		Chair: Mikhail Matveev, The University		Chair: Marco Petrolo, Politecnico di Torino, Italy		
		Location: Lecture Theat	tre 		Location: Cinema Chaeyoug Hong ¹ and Wooseok Ji ²	ROOM G.HUI
		<u>Tim Newman</u> ¹ , Cristian Lira ¹ , Jamie Hartley ² , Mindaugas Max Sasnauskas ² , Arjen Koorevaar ³	DEEP MULTI-AGENT REINFORCEMENT		Department of Mechanical Engineering, Ulsan National Institute of Science and Technology,	
16.20	Oral	¹ National Composites Centre, Engineering Development, Bristol, UK	LEARNING FOR VENT AND INLET POSITIONING AND QUANTITY IN RESIN TRANSFER MOULDING		Republic of Korea	EFFICIENT TRAINING STRATEGY FOR A SCALABLE MICROMECHANICS MODEL PREDICTING LOCALIZED
16:20	Oldi	² National Composites Centre, Manufacturing Development, Composite Moulding, Bristol, UK		Oral		STRESSES BETWEEN FIBRES
		³ Polyworx BV, Advanced Computing, Nijverdal, The Netherlands				

18:30		WELCOME RECEPTION: WILLS MEMORIAL HALL					
18:00			END OF	THE DAY 1			
		Dublin, Ireland			³ Department of Engineering, City St George's, University of London, London, United Kingdom		
		² Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), University College	(VSG): A CASE STUDY WITH CFRP DRILLING		² Department of Applied Mechanics, Indian Institute of Technology Delhi, Delhi, India	RANDOMISED PRIOR WAVELET NEURAL OPERATORS	
17:40	Oral	¹ School of Mechanical and Aerospace Engineering, Queen's University, Ireland	MANUFACTURING DEFECTS PREDICTION THROUGH VIRTUAL SAMPLE GENERATION	Oral	¹ Department of Aerospace Engineering, Indian Institute of Science, Bengaluru, India	THERMOMECHANICAL PROPERTIES USING	
		Jia Ge ^{1, 2} , Dan Sun ¹ and Yan Jin ¹	TACKLING DATA SCARCITY IN COMPOSITE		Attada Phanendra Kumar ¹ , Shailesh Garg ² , Souvik Chakraborty ² , Dineshkumar Harursampath ¹ and Sathiskumar Anusuya Ponnusami ³	CONFORMAL PREDICTION FOR UNCERTAINTY QUANTIFICATION OF COMPOSITE	
		Aerospace Engineering, Indian Institute of Technology Madras, India	AUTOCLAVE USING AI	- · - ·	Department of Aeronautics, Imperial College London, London, UK	DATESIAN NEONAL NET WORKS	
17:20	Oral	Suplal Tudu and R. Velmurugan	MODELLING OF CURING PROCESS OF FIBER REINFORCED POLYMER COMPOSITES IN AUTOCLAVE USING AI	Oral	Runze Li, Mário Miranda and Silvestre T. Pinho	THE UNCERTAINTY QUANTIFICATION OF COMPOSITE FAILURE PREDICTIONS BASED ON BAYESIAN NEURAL NETWORKS	
	Oral		A NEURAL NETWORK APPROACH TO COMPOSITES PROCESS SIMULATIONS		³ Department of Engineering Science, Solid Mechanics and Materials Engineering, University of Oxford, OX1 3PJ, Oxford, United Kingdom		
17:00		² Virginia Tech University, USA		Oral	² Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig (ScaDS.AI), TUD Dresden University of Technology, Germany	INFLUENCE OF THE SAMPLING STRATEGY FOR TRAINING DATA ON EDGE CASE PERFORMANCE OF DATA DRIVEN FAILURE CRITERION FOR FRP	
		¹ Boazici University, TURKEY			Polymer Technology, TUD Dresden University of Technology, Germany		
		Innovation Research Institute, China Nuri Ersoy 1, Mehmet Can Engül, Pınar Acar²			J. Gerritzen ¹ , A. Hornig ^{1,2,3} and M. Gude ³ ¹ Institute of Lightweight Engineering and		
		³ Institute of Mechanics, Chinese Academy of Sciences, China ⁴ HKUST Shenzhen-Hong Kong Collaborative			University of British Columbia, Canada		
	Oral	The Hong Kong Polytechnic University, HKSAR, China	INTEGRATING MICROSTRUCTURAL IMAGING AND MULTI-OBJECTIVE PROCESS OPTIMIZATION	Oral	² Electrical and Computer Engineering Department, Old Dominion University, USA ³ Department of Materials Engineering, The	DRIVEN MICROSTRUCTURE RECONSTRUCTION	
16:40		Engineering, The Hong Kong University of Science and Technology 2School of Nursing, Center of Smart Health,	MULTIMODAL FUSION LEARNING FOR SUSTAINABLE COMPOSITE MANUFACTURING:		¹ Mechanical and Aerospace Engineering Department, Old Dominion University, USA	FAILURE PREDICTION IN MOLDED COMPOSITES USING RESIDUAL STRESS AND DEEP LEARNING	
		Cheng Qiu ^{3,} Jinglei Yang ^{1, 4} ¹ Department of Mechanical and Aerospace			Jiang Li ² , Sergii G. Kravchenko ³ and Oleksandr G. Kravchenko ¹		
		Yan Shen ¹ , Tianyou Yuan ¹ , Jun Zhou ² ,			Mohammad N. Saquib ¹ , Richard Larson ¹ ,		

Tuesday, 2nd of September 2025

08:45	Registration and coffee						
	Plenary Lecture: Dr Pierre-Yves Méchin						
	Composites structural analyst & materials specialist, PlyNow						
09:15	FROM MOLECULE TO STRUCTURE, COMPOSITES BEHAVIOUR AND PERFORMANCE ENHANCED BY AI						
	Chair: Anoush Poursartip, The University of British Columbia, Canada						
	Location: Lecture Theatre						

	Location: Lecture Theatre						
		Session 3			Session 4		
	Al for Intelligent Composite Manufacturing and Control Chair: Oleksandr Kravchenko, Old Dominion University, USA Location: Lecture Theatre			Data-Driven Surrogate Models and Accelerated Simulations Chair: Wenbin Yu, Purdue University, USA Location: Cinema Room G.H01			
Time	Type of presentation	Authors	Title	Type of presentation	Authors	Title	
10:10	Keynote	Ramy Harik Clemson Composites Center, Clemson University	TOWARDS SMART AUTOMATED FIBER PLACEMENT	Keynote	Pavana Prabhakar ¹ , Haotian Feng ² , Sabarinathan P Subramaniyan ³ , and Hridyesh Tewani ⁴ ¹ Department of Mechanical Engineering, University of Wisconsin-Madison, USA ² Department of Civil & Environmental Engineering, University of Wisconsin- Madison, USA	AI FOR THE ANALYSIS, DESIGN, AND OPTIMIZATION OF COMPOSITES	
10:40	Oral	Anatoly Koptelov, Hanna Beketova, Jonathan PH. Belnoue, Stephen R. Hallett, Iryna Tretiak and Bassam El Said Bristol Composites Institute, University of Bristol, Bristol, BS8 1TR, United Kingdom	ASPECTS OF SPATIAL TIME SERIES FORECASTING FOR COMPOSITE	Oral	M. Petrolo ¹ , M. Santori ¹ , K. Johnson ² , E. Zappino ¹ and N. Zobeiry ² ¹ MUL2 LAB, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy	ASSESSMENT OF MULTI-FIDELITY STRUCTURAL THEORIES TO TRAIN PROBABILISTIC MACHINE	

² Department of Materials Science and

Engineering, University of Washington,

Seattle, WA, USA

LEARNING FOR PROCESS-INDUCED DEFECTS

MANUFACTURING PROBLEMS OF VARIOUS

DIMENSIONALITY

11:00	Oral	Marcello Laurenti, Irene Bavasso, Erika Palazzi, Jacopo Tirillò, Fabrizio Sarasini and Filippo Berto University of Rome "La Sapienza", Department of Chemical Engineering Materials Environment	AI-DRIVEN COMPUTATIONAL FRAMEWORK FOR OPTIMIZING FDM PROCESS PARAMETERS AND ENHANCING MECHANICAL PERFORMANCE	Oral	S. Fernández-León ^{1,2} , D. Mocerino ² , R. Valle ¹ , L. Baumela ¹ and C. González ^{2,3} ¹ Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Spain ² IMDEA Materiales, , Madrid, Spain ³ Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid , Spain	A DEEP SURROGATE MODEL FOR ACCELERATING LCM MOULD-FILLING SIMULATIONS IN UNSTRUCTURED AND THREE-DIMENSIONAL MESHES
11:20			Co	ffee Break		
		Session 3			Sessio	
	•	Al for Intelligent Composite Manufa			Data-Driven Surrogate Models	
		Chair: Ramy Harik, Clemson Uni Location: Lecture Thea	**		Chair: Bassam El Said, Un Location: Cinema	
11:50	Oral	Jan Wolf ¹ , Aaron Vogel ² , Mathias Morgenstern ² Christian Prescher ³ , Ulrich Burgbacher ⁴ , Manuel Prätorius ⁴ , Luis Garcia ⁵ , Benjamin Risse ⁵ , Thomas Behnisch ¹ and Maik Gude ¹ ¹ Institute for Lightweight Engineering and Polymer Technology, TUD Dresden University of Technology, Germany ² SURAGUS GmbH, Germany ³ STRUCNAMICS Engineering GmbH, Germany ⁴ tapdo technologies GmbH, Germany	TAILORING CARBON FIBERS COMBINING NOVEL INLINE SENSORS AND MACHINE LEARNING	Oral	Aewis K.W. Hii, Stephen R. Hallett and Bassam El Said Bristol Composites Institute, University of Bristol, UK	MODELLING DEFECTS AND PROGRESSIVE 3D FAILURE IN LARGE COMPOSITE COMPONENTS WITH SHELL ELEMENTS: A DATA-DRIVEN, MULTI-SCALE APPROACH
12:10	Oral	Simone Bancora ¹ , Tim Newman ¹ , Paris Mulye ² ¹ National Composites Centre, United Kingdom ² Quantiflex Simulations SAS, France	USE OF DEEP REINFORCEMENT LEARNING TO ACHIEVE REAL-TIME CONTROL OF A RESIN INFUSION PROCESS	Oral	Jens Wiegand¹ and Giuseppe Zumpano ¹ COMPACT Composite Impact Engineering LTD, UK, ² Rolls Royce PLC, UK	ACCELERATING COMPOSITE IMPACT SIMULATIONS BY THE USE OF NEURAL NET`WORK BASED SURROGATE MODELS

12:30	Oral	Patrick Flore, Fabian Röder, Kevin Chen, Andreas Gebhard Leibniz-Institut für Verbundwerkstoffe, Germany,	GEOMETRY-BASED SYNTHETIC DATA AND DEEP LEARNING FOR ONLINE SURFACE INSPECTION OF FIBER-REINFORCED COMPOSITES	Oral	Shuang Yan ¹ , Mikhail Matveev ¹ , Michael Causon ² , Marco Iglesias ² , Andreas Endruweit ¹ , and Michael Tretyakov ² 1 Composites Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK 2 School of Mathematical Sciences, Faculty of Science, University of Nottingham, Nottingham, UK	A SURROGATE MODEL FOR INVERSE PARAMETER ESTIMATION IN RESIN TRANSFER MOULDING PROCESSES
12:50				Lunch		
	A1 !	Session 5	humal Haalth Marsitanina		Sessio	
	Ai in	Non-Destructive Testing and Struct Chair: Yentl Swolfs, KU Leuver			Al-Driven Design and Industrial A Chair: Pavana Prabhakar, Universi	
		Location: Lecture Thea	,		Location: Cinema	•
13:50	Oral	A. Tabatabaeian ¹ , B. Jerkovic ² , P. Harrison ¹ , E. Marchiori ² and M. Fotouhi ³ ¹ James Watt School of Engineering, University of Glasgow, UK, ² Institute of Computing and Information Sciences, Radboud University, the Netherlands ³ Faculty of Civil Engineering and Geosciences, Delft University of Technology, the Netherlands	DETECTION OF BARELY VISIBLE IMPACT DAMAGE IN CFRP COMPOSITE PANELS USING DEEP LEARNING MODELS AND HYBRID GLASS/CARBON SENSORS	Oral	Joseph Kirchhoff ¹ , Thomas O'Leary-Roseberry ¹ , John Yao ¹ , Dingcheng Luo ¹ , Yohannes Bekele ¹ , Tom Seidl ² , Tyler Hudson ³ , Andy Newman ³ , Wesley Tayon ³ , Mehran Tehrani ⁴ , Omar Ghattas ¹ ¹ The University of Texas at Austin, USA, ² Sandia National Labs, USA ³ NASA Langley Research Center, USA ⁴ The University of California at San Diego, USA	MICRON-SCALE HETEROGENEOUS CHARACTERIZATION OF THERMOPLASTIC COMPOSITES VIA SEM-DIC, FINITE ELEMENTS & NEURAL OPERATORS
14:10	Oral	Emmanuel Fabing 1,2, Pierre-Yves Méchin 1 and Vincent Keryvin 2 1 Dassault Systèmes, France 2 Université Bretagne Sud, IRDL, France	AI BASED FIBRE MISALIGNMENT MEASUREMENT	Oral	Göran Fernlund ^{1,2} , Alireza Forghani ¹ , Anthony Floyd ¹ , and Anoush Poursartip ^{1,2} ¹ Convergent Manufacturing Technologies, Canada ² The University of British Columbia, Materials Engineering, Canada	A STRUCTURED APPROACH TO MERGING AI AND ML INTO ESTABLISHED COMPOSITES PROCESS SIMULATION AND PROCESS ANALYTICS
14:30	Oral	Jonas Naumann ^{1,2} , Jonas P. Appels ¹ , Philipp Sämann ¹ , Timo de Wolff ² and Christoph Brauer ¹ ¹ Institute of Lightweight Systems, German Aerospace Center (DLR) Stade, Germany ² Institute of Analysis and Algebra, Technische Universität Braunschweig, Braunschweig, Germany	ENHANCING COMPOSITE MICROGRAPH ANALYSIS WITH SEMANTIC SEGMENTATION	Oral	J. Kucera National Composites Centre, UK	CompoST – COMPOSITE STANDARD FOR COMPOSITE DATA TRANSFER AND INTEROPERABILITY

14:50 15:10	Oral Al in	Mahoor Mehdikhani, Rui Guo, Shailee Upadhyay, Christian Breite, and Yentl Swolfs Department of Materials Engineering, KU Leuven, Belgium, Session 5 Non-Destructive Testing and Struct Chair: Mahoor Mehdikhani, KU Le Location: Lecture Thea	tural Health Monitoring uven, Belgium	Oral Cand Poster S	Hussain Abass 1,2, Ross Allen1, Andrew Corbett 1,3 and Ton Peijs2 1 digiLab, UK 2 WMG, University of Warwick 3 Alan Turing Institute, UK ession Sessio Al-Driven Design and Industrial Chair: Tong-Earn Tay, National Uni Location: Cinema	Applications in Composites versity of Singapore, Singapore
15:50	Oral	Umeir Khan¹, Vincent K. Maes¹, Rob Hughes², Petar Zivkovic³, Jon Wright³, Turlough McMahon³, and James Kratz¹ ¹ Bristol Composites Institute, Department of Aerospace Engineering, University of Bristol, United Kingdom ² Department of Mechanical Engineering, University of Bristol, United Kingdom ³ Airbus UK, United Kingdom	TRANSFER LEARNING FOR EFFICIENT PHOTO- INSPECTION OF IN-PLANE WAVINESS	Oral	Phil Druiff Krasimir Angelov Jakub Kucera National Composites Centre, UK	WRINKLE AI: FASTER DEFECT DETECTION IN NCF MATERIALS NEXTGENINFUSION: SMART CONTROL TURBO PROJECT
16:10	Oral	Rui Guo, Mahoor Mehdikhani, Christian Breite and <u>Yentl Swolfs</u> Materials Engineering, KU Leuven, Belgium	A 2D PACKING GENERATOR FOR UNIDIRECTIONAL FIBRE-REINFORCED COMPOSITES BASED ON A GENERATIVE ADVERSARIAL NETWORK	Oral	S. Psarras¹, G. Sotiriadis¹, M. Sergolle², T. Balutch², E. Billaudeau² and V. Kostopoulos¹ ¹ Department of Mechanical Engineering & Aeronautics, University of Patras, Greece ² Naval Group, Centre d'Expertise des Structures et Matériaux Navals Technocampus Océan, France	ENHANCING REPAIR PATCH DESIGN FOR THICK COMPOSITE STRUCTURES IN NAVAL APPLICATION USING ARTIFICIAL INTELLIGENCE
16:30	Oral	A. Gazzola, M. Quaresimin, P.A. Carraro and M. Zappalorto Department of Management and Engineering, University of Padova, Vicenza, Italy.	DEEP LEARNING APPROACH FOR STRUCTURAL HEALTH MONITORING OF MULTIDIRECTIONAL LAMINATES VIA ELECTRICAL MEASUREMENTS	Oral	Yilun Dong ¹ , Zhong Zhang¹ ¹ School of Engineering Science, University of Science and Technology of China, China	ARTIFICIAL NEURAL NETWORKS APPLIED TO POLYMER COMPOSITES
16:50	Oral	Mengyue He ^{1,2} , Zhifang Zhang ¹ and <u>Karthik</u> Ram Ramakrishnan ³ ¹ Research Center for Wind Engineering and Engineering Vibration, Guangzhou University, Guangzhou, China ² College of Engineering, Shantou University, Shantou, China	SUPPORT VECTOR MACHINE ALGORITHMS FOR DELAMINATION ASSESSMENT IN VIBRATION BASED SHM	Oral	Andrejs Krauklis¹ Latvia University of Life Sciences and Technologies, Faculty of Forest and Environmental Sciences, Institute of Civil Engineering and Woodworking, MEI Core Group, Latvia	MODULAR MATERIALS INFORMATICS FRAMEWORK FOR ASSESSING COMPOSITE MATERIAL AGEING

17:10	Oral	3 Bristol Composites Institute, University of Bristol, United Kingdom Mihai M. Vasilache ^{1,2} , Iryna Tretiak ³ , Rostand B. Tayong ¹ and Vladan Velisavljevic ¹ 1 Institute for Research in Engineering and Sustainable Environment (IRESE), School of Computer Science and Technology, University of Bedfordshire, Luton, United Kingdom 2 GKN Aerospace Service Limited, London Luton Airport, Luton, Bedfordshire, United Kingdom 3 Bristol Composites Institute, University of Bristol, United Kingdom	USING MACHINE LEARNING CONVOLUTION NEURAL NETWORK METHODS FOR THE ULTRASOUND CHARACTERISATION OF POROSITY ACROSS CARBON FIBRE REINFORCED POLYMER LAYERS	Oral		
17:30		Bristoi, Offitea Kingaorii	FND	OF THE DAY 2		
17.50			END	OF THE DAT 2		
19:00			GALA DINNER: THE SANSOVII	NO HALL AT BR	ISTOL HARBOUR HOTEL	

Wednesday, 3rd of September 2025

09:00	Coffee and Pastries				
09:30	Plenary Lecture: Dr Navid Zobeiry Associate Professor in the Materials Science & Engineering Department at the University of Washington in Seattle, USA Applied AI for Composites: From Accelerated Testing to Autonomous Certification and Smarter Engineering Chair: Carlos González, IMDEA Materials, Spain Location: Lecture Theatre Session 7				
Physics-Informed Neural Networks (PINNs) and Physics-Based AI Chair: Carlos González, IMDEA Materials, Spain Location: Lecture Theatre					
Time	Type of presentation	Authors	Title		
10:20	Oral	Ehsan Ghane ¹ , Marina Maia ² , Iuri Rocha ² , Martin Fagerström ³ , and Mohsen Mirkhalaf ¹ ¹ Department of Physics, University of Gothenburg, Sweden, ² Department, Delft University of Technology, The Netherlands ³ Department of Industrial and Materials Science, Chalmers University of Technology, Sweden	HIERARCHICAL PHYSICALLY RECURRENT NEURAL NETWORKS FOR MULTI-SCALE MODELING OF WOVEN COMPOSITES		
10:40	Oral	Sahar Abouali, Anoush Poursartip, Reza Vaziri Composites Research Network, Departments of Civil Engineering and Materials Engineering, The University of British Columbia, Vancouver, BC, Canada	A PHYSICS-INFORMED NEURAL NETWORK FOR INVERSE CHARACTERIZATION OF COMPOSITE DAMAGE MODELS USING FULL-FIELD EXPERIMENTAL DATA		

11:00	Oral	Bernabe Lorenzo Avila ¹ , Nils Meyer ² and Dietmar Koch ³ ¹ Materials Engineering, University of Augsburg, Germany, ² Data-driven Product Engineering and Design, University of Augsburg, Germany ³ Materials Engineering, University of Augsburg, Germany	PREDICTING THERMAL BEHAVIOUR OF C/C-SIC FIBRE-PATCHED STRUCTURES USING PHYSICS-INFORMED-NETWORKS (PINNS)			
11:20	Coffee break					
Session 7						
Physics-Informed Neural Networks (PINNs) and Physics-Based AI						
Chair: Adam Sobey, University of Southampton, UK Location: Lecture Theatre						
11:50	Oral	John M. Hanna ¹² ¹ Akhet solutions, Rennes, France ² Inria Rennes, France	APPLICATIONS OF PHYSICS-INFORMED NEURAL NETWORKS TO LIQUID COMPOSITE MOLDING			
12:10	Oral	Tobias Würth ¹ , Niklas Freymuth ² , Gerhard Neumann ² and Luise Kärger ¹ ¹ Institute of Vehicle System Technology, Karlsruhe Institute of Technology (KIT), Germany ² Autonomous Learning Robots, Karlsruhe Institute of Technology (KIT), Germany	PHYSICS-INFORMED MESHGRAPHNETS (PI-MGNS) FOR ANSIOTROPIC MATERIALS			
12:30	Oral	Shady Adib ¹ , leva Misiunaite ² ¹ School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom ² Research Laboratory of Innovative Building Structures, Department of Aeronautical Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania	AI-ENHANCED TOPOLOGY OPTIMISATION OF PLA LATTICE STRUCTURES FOR HYBRID COMPOSITE APPLICATIONS: EXPLORING PHYSICS-INFORMED APPROACHES			
12:50	Closing Ceremony					
13:00	FAREWELL LUNCH					
14:00	END OF CONFERENCE TOUR TO THE NATIONAL COMPOSITE CENTRE AND ISAMBARD AI (PRE-BOOKED ONLY)					

Start at 14:30 estimated time return time 17:00 (TBC)